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Received 14 April 1989 

Abstract. We present the results of calculations of the phase properties of the p-state chiral 
clock model for p = 4 and 8 using the mean-field approximation and the Monte Carlo 
method. Phase diagrams are calculated using both methods and the results are compared. 
Within the mean-field approximation it is possible to determine the structures of the stable 
phases to very high precision by a systematic process similar to that used for the ANNNI 
model by others. The mean-field calculations show that the number of stable phases 
increases as p increases, and that away from the multiphase point new phases are formed 
from combinations of the stable low-temperature phases. Monte Carlo phase diagrams are 
determined from the properties of the averages of the Potts spins along the chiral axis. 
These diagrams are in qualitative agreement with the mean-field diagrams. The Monte 
Carlo calculations reveal a modulated phase region which increases in complexity as p 
increases, but the simulations are not able to yield simple precise modulated structures. 

1. Introduction 

The three-state chiral clock model [ l ,  21 is the simplest model involving only nearest- 
neighbour (NN) interactions which exhibits modulated phases. As a consequence this 
model has been studied extensively by exact low-temperature series expansions [3], 
mean-field theory [4, 51, the Bethe approximation [ 6 ] ,  the Monte Carlo method [7] 
and renormalisation group theory [2]. The basic features of the phase diagram of this 
model are thus well understood [8]. In contrast, less is known about the phase diagram 
of the more general p-state chiral clock (cc,) model [9] for p > 3. This is due in 
part to a lack of clear theoretical or experimental motivation to carry out the more 
difficult analysis of the model with larger p .  Recently however, Scott and Pearce [lo] 
introduced a new model for the Pp( phase in lipid bilayers which is closely related to the 
CC, model with p N 8. In the lipid bilayer model the modulated phase is one in which 
the surface of the otherwise planar two-dimensional bilayer becomes ‘corrugated’ with 
periodic (but asymmetric) ripple-like structure [ l l ] .  In the model of Scott and Pearce 
the modulated phase region is associated with the ripples in the PI, phase. 

This has led us to undertake a study of the cc, model for p = 4 and p = 8 using 
mean-field theory and the Monte Carlo method. In the following section we introduce 
the model, describe the mean-field calculations and give the principal features of the 
phase diagram which result from this approximation. In 5 3 the Monte Carlo method 
and results will be described. In 0 4 we compare the results from the two different 
analyses. 

0305-4470/89/204463+14$02.50 @ 1989 IOP Publishing Ltd 4463 
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2. Mean-field theory 

2.1. Basic aspects of the model and notation 

The cc, model is defined on a hypercubic lattice of dimension d by the Hamiltonian 

where Jo is the ferromagnetic interaction energy for nearest-neighbour (NN) pairs in the 
( d  - 1)-dimensional layers and J is the interaction energy between nearest-neighbour 
pairs along the chiral axis, z .  The notation ( i , j )  indicates that the sum is to be carried 
out over N N  pairs only. The {a,,,} are two-dimensional vectors defined by 

where the Potts variable nl,z can take on the values ni,z = 0,1,. . . , p - 1. The operator 
R is the two-dimensional rotation matrix 

1 cos 2nA/p  -sin 2nA/p  
sin 2nA/p  cos 2nAlp  R(A)  = 

The effect of the chiral field A can be seen by considering the ground states of 
the model for 0 5 A 5 1. Note that it is sufficient to consider the relative ordering 
of successive spins along the chiral axis z since from equation ( 1 )  it is clear that the 
lowest-energy state of the model is one in which all the Potts variables in a given layer 
take on the same value, regardless of the choice of A. For 0 I A < 1/2  the ground 
state is one in which the Potts variables along the z axis take on identical values. This 
phase is commonly denoted by (CO). When 1/2  < A I 1 the ground state is one of 
chiral order along the z axis. That is, the successive Potts variables along this axis 
increase by + 1 in sequence, n,,, = 0 1 2 . . .  ( p  - 1 )  0 1 , . . .  Employing the notation of 
Yeomans and Fisher [3], this phase is denoted by (1). At the point A = 112, the energy 
of interaction is the same for adjacent Potts spins which have n,+, = n, or r ~ , + ~  = n, + 1 
so that the ground state at this point is infinitely degenerate. The point T = 0, A = 1/2 
is thus a multiphase point. 

Above T = 0 the nature of the phases in the three-dimensional model which can 
coexist near A = 1/2  has been determined for p = 3 by Yeomans and Fisher [3] by 
analysis of exact low-temperature series expansions. The principal result is that for 
A 112, the (1) phase is eventually replaced, as T increases, by a phase in which the 
sites along the z axis follow the ordering pattern . . .011200122.. ., i.e. a chiral bond 
followed by a ferromagnetic bond, repeating along the z axis. The abbreviation for 
this phase is (12) .  If A is not too large the (12) phase is followed (as temperature 
increases) by a (122) (or (122))  phase, and then (123) ,  etc. The temperature regions in 
which phases of the form (12’) are stable become smaller as A approaches 1/2 from 
above. From the pattern established for A > 1/2 one can also construct directly the 
phase sequence for A < 1/2  from the fact that the partition function of the CC, model 
is invariant under the transformation [9] 

A - t l - A  n, -+ -n, + z (mod p ) .  (3) 
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For p > 3 analysis of the exact low-temperature series for the three-dimensional 
model indicates that stable phases of the form (lJ2) intervene between the (1) and the 
(1  2) phases as long as j 5 p - 2. Further, as T increases, the (121) sequence of phases 
gives way to additional phases. For example, for p = 4, the sequence of stable phases 
near A = 1/2 as T increases is found to be [9] 

(1) -, (122) + (12) + (12122) + (122) 

-, (12*12~) + (123) -, (123124) -+ . . .  -, (2). 

Mean field [4, 51 and Bethe approximations [6] have also been applied to the three- 
dimensional cc3 model. At low temperatures it is found [5] that the mean-field 
approximation yields more commensurate phases than are found in the analysis of the 
exact low-temperature series. The Bethe approximation, however, precisely reproduces 
161 the sequence of low-temperature phases found from the exact low-temperature 
series [3]. 

In contrast to the discrete nature of the low-temperature commensurate phases, the 
stable phases in the vicinity of the order-disorder line T, are incommensurate and are 
characterised by a continuously varying wavevector. In the interesting-and physically 
relevant-intermediate region between T = 0 and T z T, the nature of the stable 
phases is not as well known. To date, the mean-field [4, 51 and Bethe approximations 
[6] have been applied only to the p = 3 model in three dimensions. In this region 
the two methods give approximately the same phase sequences and branching points 
of new commensurate phases [6], which suggests that the mean-field approximation is 
better for higher temperatures. The temperature scales differ for the two methods, with 
mean-field temperatures higher, as is usually the case. 

2.2. Mean-jield equations 

To obtain the mean-field free energy G,, of the two-dimensional C C ,  model we use the 
variational principle afforded by the Gibbs-Bogoliubov inequality [12], 

(4) 
where G is the exact free energy, X 0  is any trial Hamiltonian, and the average denoted 
by ( j0 is carried out in the X 0  ensemble. The procedure is completely analogous to 
that carried out for the ANNNI model by Yokoi et a1 [13] and for the CC3 model by 
Ottinger [4]. In this way we find for the CC,  model on an N x N two-dimensional 
lattice with chiral interactions along the z axis the result 

G I G,, = min [Go + (2 - 20)0] 

N P -  1 1 
N2 N 
-- Gmf - - [Jam, . m, + J m ,  . R(A)m,-l - T In (E exp(Pq, . a ( n ) )  

z=1 n=O 

where m, is the average magnetisation in a 'layer', defined by 

and 

qz  = 2Jomz + J (R(A)m,-, + R(--A)m,+,) (7) 
is the mean field in 'layer' z. For a given choice of T and A the stable phase is the one 
that minimises G,,, and this phase is given by the solution of the set of (non-linear) 
equations (6), with q ,  given by equation (7). 
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2.3. Numerical solution of the mean-jeld equations 

Let us now turn to the problem of determining the stable commensurate phases for 
intermediate temperatures between T = 0 and the order-disorder line T = T, by 
solving equations (6) numerically on finite lattices. Suppose we obtain, for a given 
choice of T and A, a configuration that minimises G,, on a lattice with L layers. This 
configuration may not be the stable phase on the infinite lattice; a similar solution for 
a lattice with, say, L + 2 layers may give a smaller value for Gmf. Thus to find the 
commensurate phase which minimises G,, it is necessary to compare the free energy 
for solutions of equations (6) on lattices of all possible sizes. 

To circumvent this impossibility, we employ a ‘systematic finite-lattice mean-field’ 
approach proposed originally by Selke and Duxbury for the ANNNI model [14]. In 
this approach the phase diagram for intermediate temperatures is deduced in a self- 
consistent way by supposing that additional, more complicated commensurate phases 
are formed from combinations of the basic commensurate phases that spring from the 
multiphase point. The mean-field equations (6) are then solved iteratively, for each 
hypothesised phase, on the smallest lattice (with periodic boundary conditions) which 
is compatible with the phase in question. The free energies per site of each phase are 
then computed and compared to find the stable phase. In this way it is possible to 
determine the minimum free energy by considering only a small subset of finite lattice 
sizes. 

Since the precise sequence of phases which springs from the multiphase point of 
the two-dimensional CC, model in the mean-field approximation is not known, we have 
modified the systematic mean-field finite-lattice approach in a way we now describe. 
We begin by assuming for T > 0 the stability of only the (1), (12) and (2) phases at 
the multiphase point. Then for each A we find the temperature at which the (1) phase 
becomes unstable with respect to the (12) phase, and the temperature at which (12) 
phase becomes unstable with respect to the (2) phase (this latter boundary exists for 
sufficiently small A).  With these pseudo phase boundaries established we then check 
to see if the (1):(12) and (12):(2) phase boundaries are unstable with respect to the 
presence of the (122) and (122) phases, respectively. The phases (122) and (122) may 
be thought of as combinations of the (1) and (12) phases, and the (12) and (2) phases, 
respectively. The process is repeated until the previously established phase boundaries 
are found to be stable to the hypothesised presence of the ‘new’ phases. We illustrate 
the first few levels of this systematic search in table 1. 

Table 1. Successive search levels for pseudo phase boundaries in the systematic finite-lattice 
mean-field approach to the ccP model. Each colon denotes the boundary between the two 
phases. 

( 1 ) :( 12) :( 2) 

( 1) : ( 122) : ( 12) : ( 122) : (2) 

(1 )  :( 132) :( 122) :( 1221 2) :( 12) :( 121 22) :( 122) :( 123) :(2) 

( 1) : ( 1 42) : ( 1 2) : ( 1 32  1 22) : ( 1 2) : ((1 212 12) : ( 1 2 12) : ( 1 2( 12)*) ( 12) 
( ( 1 2 1 ~ 1 2 ~ )  :(12123 :(12(122)2) :(122) :(122123) :(123) :(124) :(2) 
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Several details concerning the numerical method are worth noting. First, we 
used a multivariable generalisation of Newton’s iteration method [15] to solve the 
system of non-linear equations (6). Each hypothesised phase was chosen as an initial 
configuration on a lattice of appropriate size and equations (6) were then iterated to 
convergence. The use of Newton’s method ensured rapid convergence of the iterations 
even for temperatures near the order-disorder temperature T,. Because of this we were 
able to consider commensurate phases which required lattice sizes of up to 2: 130 sites. 
Furthermore the method proved to be capable of very high accuracy-up to 31 or 
32 decimal digits-when carried out on computers which support very high precision 
(128 bits) arithmetic. This proved to be necessary near the multiphase point where 
free-energy differences between adjacent stable phases approach zero as A approaches 
1/2. The analysis of the eight-state model required this high precision even away from 
the multiphase point since, for comparable values of A, the temperature region in 
which a phase is stable is much smaller than for p = 3 or p = 4. 

2.4. Phase diagrams 

The large-scale features of the T-A phase diagram for the CC, model (with J ,  = J )  
which emerge from the systematic finite-lattice mean-field computations are shown in 
figure 1 (broken curves) together with the results of the Monte Carlo simulations (full 
lines) to be described later. The upper broken curve is the mean-field order-disorder 
line T, = 2 J / k , ,  which is obtained easily from the determination of the mean field 
T, for the three-dimensional CC, model [4]. The lower broken curve was obtained by 
solving the mean-field equations (6) directly for the case A > 1/2.  The results for 
A < 1 / 2  were then obtained by reflecting the results for A > 1 /2  using the symmetry 
properties of equation (3) .  The remainder of the discussion will focus on the results 
for A > 1/2 .  The lower broken curve in figure 1 represents, for A > 1/2 ,  the boundary 

B 
Figure 1. Large-scale features of the phase diagram of the C C ~  model from the systematic 
finite-lattice mean-field theory (broken curves) and Monte Carlo simulations (full curves). 
The upper curves in each case represent the order-disorder line T, while the lower curves 
represent the boundary of the (1) phase. The lines connecting the points for the Monte 
Carlo simulations are intended as guide to the eye. 
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below which the (1) phase is the stable phase in the mean-field approximation. Along 
this curve, phases of the form (112) coexist with the (1) phase. This lower curve-and 
the value j for the coexistent phase-was determined by computing, for successive 
values of j ,  the temperature T I j  at which the mean-field free energies of the (l j2) phase 
and the (1) phase are identical. The phase (lj2) coexistent with (1) is that for which 

is a minimum. 
Carrying out this procedure for various choices of A we find that the value of j for 

the phase (lj2) which is coexistent with the (1) phase changes at various ‘branching 
points’ as A increases. Thus, for example, at A = 0.505 the phase (132) is coexistent 
with the (1) phase at a temperature of T = 0.459 062 856 452 62 J/k,, but the phase 
(142) is not stable for this choice of A. However at A = 0.510 the phase (142) is stable 
and coexists with the (1) phase at a temperature of T = 0.529 107 826 965 32J/k,. 
For a value A = A34 then there is a temperature at which the three phases ( I ) ,  (132) 
and (142) coexist, and this point is the ‘branching point’ for the (142) phase. For 
A < A34 the (1) phase gives way, with increasing temperature, to the ( 132) phase, but 
for A > A,, the (1) phase yields to the (142) phase. Many more branching points of 
this nature occur for higher values A, and the value of j for the phase (l j2) coexistent 
with the (1) phase can become quite large. For example, for A = 0.75 the (lS2) phase 
coexists with the (1) phase, for A = 0.8 the (l’O2) phase coexists with the (1) phase, 
and for A = 0.9 an undetermined phase (l j2) with j > 19 coexists with the (1) phase! 
This trend suggests the possibility that j -+ cx) as A -+ 1. If this is so, then the point 
on the (1) phase boundary with A = 1 is an accumulation point [14] of the branchings 
of the (l j2) phases along the (1) phase. Note also that this proposed accumulation 
point coincides with the intersection of the disorder line and the (1) phase boundary 
at A = 1. 

As a first step to exploring the complex and interesting intermediate region between 
the mean-field ( 1) phase boundary and the mean-field order-disorder temperature 
T, = 2J/k,  we also determined the boundary of the (2) phase in the CC, model 
by a process similar to that carried out to determine the boundary of the (1) phase. 
Figure 2 shows this boundary for A > 1/2 in relation to the (1) phase boundary and 
T,. The boundary of the (2) phase was obtained by finding for successive values of j 
the temperature Tj,2 at which the mean-field free energies of the (l2J) phase and the (2) 
phase are equal. The phase (12j) that is coexistent with the (2) phase is given by the 
value of j for which Tj,2 is a maximum. The curvature of this boundary is consistent 
with previous mean-field results [4, 51 for the three-dimensional CC, model. 

The remainder of the phase diagram is filled with sequences of commensurate 
phases which increase in complexity as A increases. The temperature range over which 
a given phase in this region is stable is quite small and prohibits making a meaningful 
quantitative graph. Rather than simply making schematic plots of the phase diagram 
in this region, we present some typical results of the systematic finite-lattice mean-field 
approach in table 2, which has the further virtue of demonstrating the steps involved 
in the systematic mean-field approach. Each entry in table 2 represents the temperature 
at which G,, for two phases is equal for either A = 0.505 or A = 0.510. From the 
entries in table 2 we see that for A = 0.505 the temperature at which G,, for (1) and 
(142) is equal is higher than the temperature at which G,, for (1) and (132) are equal, 
signifying that ( 142) is not stable for this value of A. However, we see from the entries 
in the second column of table 2 that (142) is stable and coexists with the (1) phase at 
A = 0.51. 
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2.c 

1.5 

? 
1.C 

( 1 )  

0 I I I 

0.50 0.52 0.54 0.56 0.58 C 

A 

Figure 2. Phase diagram of the cc4 model near A = 1/2 from the systematic finite-lattice 
mean-field theory. The curve falling between the (1) boundary and T, is the boundary of 
the (2) phase. The broken part of this boundary is an extrapolation based on the analogous 
part of the mean-field phase diagram of the three-dimensional cc3 model [5]. Also shown 
are the approximate locations of the branching points for the (142) and (152) phases. 

Table 2. Pseudo phase boundary temperatures for the cc4 model with A = 0.505 and 
A = 0.51. The table demonstrates the way in which true phase boundaries are determined 
in the systematic finite-lattice mean-field approach. All temperatures are given in units of 
J l k ~ .  

A = 0.505 A = 0.51 

(1) :( 12) 0.459 064 758 081 39 
(12):(2) 0.465 675 757 348 22 

( I )  : (122) 0.459 062 868 580 34 
(l22):(12) 0.459 090443 669 35 
(12):(122) 0.465 659 086 607 57 
(1  22) :(2) 0.465 686 881 143 27 

( I )  :( 1 32) 0.459 062 856 452 62 
(132):(122) 0.459 062 917 091 36 
(l22):(I2212) 0.459 090 443 448 46 
(12212):(12) 0.459 090443 835 04 
(12):(12122) 0.465 659 086 444 60 
(12122):(122) 0.465 659 086 879 23 
(122):(123) 0.465 686 818 342 23 
(123):(2) 0.465 686 906 263 80 

(1):(i42) 0.459 062 856 453 09 

0.529 142 043 491 63 
0.544 416 563 062 63 

0.529 107 967 930 21 
0.529 244 589 159 18 
0.544 289 667 21 1 44 
0.544 501 603 280 90 

0.529 107 826 978 22 
0.529 108 531 751 42 
0.529 244 581 609 84 
0.529 244 594 821 18 
0.544 289 657 335 08 
0.544 289 683 672 07 
0.544 500 154 494 49 
0.544 502 182 838 75 

0.529 107 826 965 32 
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The systematic finite-lattice mean-field analysis of the ccg model is much more 
difficult than that of the cC, model because the number of stable phases for a given 
A increases, and this in turn leads to larger and larger lattices to accommodate the 
hypothesised phases. We have for this reason restricted our mean-field analysis in this 
instance to determining the (1) phase boundary. This boundary is shown in figure 3. 
As in figure 1 for the cc4 model, figure 3 also shows the results of Monte Carlo 
simulations for the ccg model to be described in the next section. Note that the (1) 
boundary for the ccg model is suppressed relative to the same boundary for the cc, 
model. 

1.0 

0.5 

0 0.2 0.6 0.8 

A 

Figure 3. Large-scale features of the phase diagram of the ccg model from the systematic 
finite-lattice mean-field theory (broken curves) and Monte Carlo simulations (full curves). 
The upper curves in each case represent the order-disorder line Tc while the lower curves 
represent the boundary of the (1) phase. The mean-field (1) boundary rises to intersect the 
mean field Tc at A = 0 and A = 1. The lines connecting the points for the Monte Carlo 
simulations are intended as a guide to the eye. 

3. Monte Carlo studies 

3.1. Method 

The Monte Carlo (MC) calculations were carried out in a manner very similar to 
the calculations of Selke and Yeomans [7] for the two-dimensional CC, model. In 
particular, the Hamiltonian of equation (1) was used to define the model on a lattice 
of 132 sites along the chiral ( z )  axis by 32 sites along the perpendicular axis. Periodic 
boundary conditions were imposed, and the standard Monte Carlo sampling algorithm 
was used [16]. Full simulations were carried out for models with p = 4 and p = 8, and 
for 0.5 < A < 0.95, taking advantage of the symmetry of the partition function (3). 
Each run was initially started from the chiral ground state or from an equilibrated 
configuration generated at a slightly different temperature. Generally, systems were 
equilibrated for (0.5-2) x lo4 M C  steps per site, and averages were calculated over 
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(1.5-3) x lo4 per site, or until averages appeared stable. Quantities calculated included 
the average energy of the system, the specific heat using the energy fluctuation relation 
[16] and the average value of the Potts variable in each row as a function of the location 
z along the chiral axis. In addition, ‘snapshots’ of configurations were examined at 
intermediate points in each run. 

3.2. Monte Carlo results 

The usual way of locating phase boundaries, via anomalies in the specific heat, did not 
prove to be useful for the values of p used in the simulations. Generally plots of specific 
heat against T were broad with only a hint of a ‘shoulder’ at a temperature close to the 
onset of the modulated phase. We found more dramatic evidence for phase changes 
in plots of (nr)row as functions of z .  A sequence of such plots for p = 4 and A = 0.55 
is shown in figure 4,  which demonstrates that at T 5 0 . 4 J / k B  the system remains in 
the ground state chiral phase. However, at T = 0.9 J / k B  the plots change to patterns 
indicative of modulated order. This is evidenced by the different periodicities of the 
plots and by the correlation between averages at some neighbouring sites (two NN sites 
having nearly the same (nz)row) .  At T = 1.1 J / k B  all the averages are very close to 
the fully disordered value, which is 1.5 for p = 4.  We have used these signatures in 
the order parameter plots to approximately locate the phase boundaries by examining 
averages calculated for A = 0.55, 0.6 and 0.9. The resulting phase diagram is shown by 
the full curves in figure 1. The points for A < 1/2 were obtained by reflection about 
the line A = 1/2. 

To further ascertain the nature of the modulated region, examination of individual 
configurations is helpful. Table 3 shows a series of such configurations. Evidence 
of overlapping regions of modulated phase sequences of the form is seen in 
table 3(b) .  These sequences do not appear above T ‘v 1.1 J/kB (table 3 ( c ) )  or at low 
temperatures (table 3 ( a ) ) .  

The calculations for the p = 8 model were carried out in the same fashion as the 
p = 4 model above. Again, the phase boundaries were best determined by examining 
the plots of (nz)row against z .  Figure 5 shows a sequence of these plots for A = 0.55. 
Note that the modulated phase sets in at a lower temperature than in the four-state 
model. Figure 3 shows, together with the mean-field results described earlier, the 
phase diagram obtained from order parameter plots. For large p the modulated phase 
persists down to A = 0. Direct MC simulations at A = 0 confirm that a change occurs 
in the order parameter plots at T = 0 . 4 J / k B  as figure 5 indicates, but examination 
of the configurations shows no easily discernible modulation patterns. The nature of 
the intermediate phase at A = 0 or A = 1 is not known. Table 4 shows snapshots of 
configurations found in the modulated region for A = 0.95, revealing an example of 
the nature of the phases in this region. Configurations in the modulated phase region 
(table 4 ( b ) )  show regions of (1’2) phases for various values of j .  

4. Comparison of the two methods and conclusions 

To compare the results of the mean-field and Monte Carlo methods for the two- 
dimensional CC, model, consider once again figure 1 which shows the phase diagrams 
for the CC, model obtained by the two methods. Near the multiphase point the Monte 
Carlo calculations are not sufficiently accurate to pin down the width of the modulated 
region (the lines connecting the calculated phase-change points in the Monte Carlo 
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nearly the same (n ( i ) )  values provides the sig- 
nature for the modulated phase region. These 

ing to form (lJ2) phases for several values of j .  
(c) Same as ( a )  but with T = l.OJ/kB. In the 
fully disordered phase all values of n are equally 
likely at any site, so all averages should con- 
verge to 1.5, the arithmetic average of 0 1 2 3. 
This is very nearly the case for the model at this 
temperature. 

' '' 2o j0 40 s' 6o 70 90 loo ''' "' 130 
i 

portion of the diagram are intended as guides to the eye) but the two diagrams agree 
fairly well in this area. The location of the line separating the disordered phase from 
the modulated phases is higher in the mean-field approximation than in the computer 
simulations, and this overestimate is typical of the mean-field approximation. The 
comparison of the phase diagrams that result from the two methods for the CC, model 
is shown in figure 3. As was the case for the cC, model calculations, the methods are 
in reasonable agreement for the location of the modulated phase line in the region 
of the multiphase point, with the mean-field method predicting a substantially higher 
modulated-disordered phase transition line than the Monte Carlo method. When 
comparing the mean-field and Monte Carlo methods it is important to remember 
the role of dimensionality in the two methods. In the mean-field approximation, the 
dimensionality enters in only through the coordination number. For the CC, model this 
means that commensurate phases are found in mean-field theory even for d = 2. In the 
Monte Carlo simulations the algebraic decay of correlations [l] in the two-dimensional 
CC, model inhibits the appearance of such phases. Thus the two methods differ in the 
precise nature of the modulated region of the phase diagram. 

A qualitative difference between the cc4 and CC, models is seen by comparing 
figures 1 and 3. In figure 1 for the CC, model, the boundary of the (1) phase in both 
the mean-field and Monte Carlo methods rises to approach the order-disorder line and 
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Table 3. Typical configurations generated in the Monte Carlo simulations of the cc4 model. 
In all configurations, A = 0.6. (a) Configuration for T = 0.4 J/ke showing chiral order. (b)  
Configuration for T = 0.9 J/kB showing the modulated region. Simple structures do not 
appear because of the very small free-energy differences between modulated phases. Rather, 
one sees small regions where (1’2) phases begin to form, along with more complicated 
phases. (c) Configuration for T = 1.1 J/kB showing a more or less random distribution of 
Potts spin values throughout the lattice. 
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Figure 5. ( a )  Plot of (n ( i ) ) ,  the average of the 
Potts spin over the 32 sites in row i ,  against 
i, the row number for the ccg model for T = 
0.1 J / k B  and A = 0.55. As in figure 4(a), this 
plot is the signature of the fully ordered phase 
in the eight-state model. (b)  Same as (a)  with 
T = 0.5 J/!Q. As in figure 4(b), this plot is the 
signature of the modulated phase. (c) Same as 
( a )  with T = 1.1 J / k B .  As in figure 4(c), this plot 
is a signature of the disordered phase since the 
arithmetic average of 0 . . . 7 is 3.5. 

I 

apparently intersects T, at A = 1.0 and A = 0.0. In figure 3 for the CC8 model, however, 
MC simulations carried out at A = 0 show that the ordered low-temperature phase 
undergoes fluctuations over the size of the simulation cell when T is increased above 
about 0.35, and below this temperature the system remains locked in the fully ordered 
phase. The system does not become fully disordered, however, until T N 1.1 J / k , ,  even 
when A = 0. Thus it would appear from the simulations that for the two-dimensional 
cc8 model an intermediate phase persists even at A = 0. This is in basic agreement 
with the results of the free-fermion approximation for the two-dimensional CC, model 
as found earlier by Ostlund [l]. In the free-fermion approximation an intermediate 
phase persists down to A = 0 only for p 2 5. The Monte Carlo simulations are 
then in qualitative agreement with the results of the free-fermion approximation. The 
fact that the modulated phases do not persist at A = 1 (or equivalently at A = 0 by 
equation (3)) in the mean-field theory of the two-dimensional CC, model suggests that 
the free-fermion approximation is a better approximation in this region than is the 
mean-field approximation. We note also that the prediction of an intermediate phase 
at A = 0 in the free-fermion approximation of the chiral clock model for p 2 5 is 
in agreement with recent general results for models with Z ( p )  symmetry [17], which 
include the chiral clock model at A = 0. Bonnier et a1 [17] found that the Z ( p ) -  
symmetric transition is of the Kosterlitz-Thouless type [18] for p 2 5 and of the king 
type for p < 5. 

Although the Monte Carlo simulations confirm the results of the free fermion ap- 
proximation, no simple phase structure emerges from the calculations in the modulated 
regions. This is perhaps due in part to the finite lattice size chosen for the Monte 
Carlo simulations, but this of course is a potential problem in any Monte Carlo sim- 
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Table 4. Typical configurations generated in the Monte Carlo simulations of the ccs model. 
In these configurations, A = 0.95. As in table 3, a configuration typical of each phase region 
is shown. (a )  Configuration for T = 0.1 J/kB. ( b )  Configuration for T = 0.4 J / ~ B .  (c) 
Configuration for T = 1 . 1  J/kB. 
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ulation. The problem of identifying specific commensurate phases from Monte Carlo 
simulations merits further investigation. Furthermore, the multiple-state nature of the 
CC, model for p > 5 makes identification of statistically meaningful and physically 
relevant local dislocations or defects very difficult. Such an identification is needed to 
determine whether the models fit the Kosterlitz-Thouless picture of two-dimensional 
disorder transitions. 
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